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Abstract

Background Chimeric antigen receptor-engineered T (CAR-T) cell therapy shown limited
efficacy in solid tumors, owing to an immunosuppressive tumor microenvironment and
inefficient trafficking of CAR-Ts to tumor. Methods We developed a virus-like particle (VLPs)
platform using helper-dependent adenovirus to enable in vivo engineering of hematopoietic
stem cells (HSCs). These VLPs have a large cargo capacity of up to 35 kilobases, enabling
construction of single- or multi-cellular CAR sequences under distinct lineage-specific
promoters for precise immune cell engineering. Results To achieve selective therapeutic
payload expression, we identified and validated lineage-restricted promoters with myeloid- or
T/NK-cell-specific activity in primary human and murine immune cells. CAR constructs driven
by monocyte- or T/NK-restricted promoters successfully generated functional CAR myeloid
(M), T and NK cells, respectively. To assess activity in vivo, human CD46+ (hCD46+) mouse
hematopoietic stem and progenitor cells (HSPCs) were transduced with VLPs encoding CAR
driven by a ubiquitous promoter (CAG) or lineage restricted regulatory elements and
transplanted into irradiated recipient mice to assess HSPC-derived CAR+ immune cell
generation. While the ubiquitous CAG promoter drove CAR expression across all immune cell
lineages, myeloid- and T/NK-restricted promoters confined CAR expression to their respective
lineages. These lineage-specific CAR immune cells exhibited on-target tumor cytotoxicity
comparable to CAG-driven CAR while minimizing off-target expression. Tumor-infiltrating
CAR+ effector cells displayed a proinflammatory phenotype compared to their CAR-
counterparts. Furthermore, concatenation of myeloid- and T/NK-restricted promoters enabled
generation of multi-lineage CAR immune cells from a single VLP.
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Figure 1. Mobilization of HSCs into peripheral blood enables in vivo VLP targeting of both primitive progenitors
and mature immune cells. Direct transduction of circulating myeloid, T, and NK cells generates a population of
armed effector cells within days of VLP administration. Transduced HSCs home to the bone marrow where
integrated HSCs give rise to engineered immune cell lineages. Long-term HSCs comprise a self-renewing pool of
effector cells, conferring durable anti-tumor activity from a single VLP dose.

Y

a, R[chard

-4"\

J

Lineage-specific promoters are active in mature immune cells
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Figure 2. (A) VLP vector encoding anti-HER2 CAR(s) driven by CAG, T/NK- and/or myeloid- (Myel-) promoter (Pr),
along with an EF1a driven MGMTP140K cassette to enable chemotherapy-based enrichment of integrated cells. (B)

Schematic of ex vivo VLP treatment of hCD46+ murine HSPCs and transplant into irradiated C57BL/6 mice.
Fluorescence histogram (C) and frequency (D) of HER2 CAR+ cells in blood at 16 weeks post-HSPC transplant.
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Figure 4. Frequency of HER2 CAR expression in peripheral blood immune cell types (A) and bone marrow cells
(B) at 10- and 6.5-weeks post-HSPC transplant, respectively. Bone marrow cells include Lineage-, Sca1+, c-Kit+
(LSK) and long-term hematopoietic stem cell (LT-HSCs). Experiment outlined in Figure 2B. (C) HER2 CAR
frequency (left) geometric mean fluorescence intensity (gMFI; right) in human CD14+ monocytes treated with VLP
and differentiated to macrophages. VLP vector encoding anti-HER2 CAR driven by Myel-Pr with or without binding
sites for candidate miRNA, anti-HER2 CAR driven by T/NK-Pr, and an EF1a driven MGMTFP140K cassette.
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In vivo generated CAR M and CAR T exhibit potent antigen-
dependent tumor cell cytotoxicity
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Multiplexed CAR-M/NK/T cells mediate anti-tumor activity and
remodel tumor microenvironment in vivo
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Figure 6. (A) Experimental timeline to assess tumor control mediated by in vivo VLP HSC transduction,
enrichment, and CAR expression in mature immune cell lineages. Bone marrow transplanted into HER2+ tumor
bearing and irradiated C57BL/6 mice to assess tumor control. (B) Composite data of tumor growth over time.
Tumors were harvested on Day 25 post-transplant and processed to single cells for flow cytometric analysis. (C)
Geometric mean fluorescence intensity (gMFI) of CD80 (left) and CD86 (right) on non-gene marked and gene-
marked macrophages in tumor. (D) Absolute count of GFP+ or CAR+ T cells in tumors. (E) Absolute count of
CD25+ GFP+ or CAR+ T cells. (F) Absolute count of CD8+ GFP+ or CAR+ T cells.

Conclusions

® A single in vivo dose of VLPs generates a multi-cellular HER2 CAR+
population of immune effectors, including CAR-M, CAR-NK & CAR-T cells

Lineage-specific promoters direct CAR expression to discreet mature immune
cells, enabling regulated expression of multiplexed therapeutic payloads

@ In vivo generated HER2 CAR-M/NK/T cells infiltrate and remodel the TME,
resulting in anti-tumor efficacy
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